Everything You Need to Know About Diamonds: Quality, Price & Investment
Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Diamond as a form of carbon is tasteless, odorless, strong, brittle, colorless in its pure form, a poor conductor of electricity, and insoluble in water. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, but diamond is metastable and converts to it at a negligible rate under those conditions. Diamond has the highest hardness and thermal conductivity of any natural material, properties that are used in major industrial applications such as cutting and polishing tools. They are also the reason that diamond anvil cells can subject materials to pressures found deep in the Earth.
Because the arrangement of atoms
in diamond is extremely rigid, few types of impurity can contaminate it (two
exceptions are boron and nitrogen). Small numbers of defects or impurities
(about one per million of lattice atoms) can color a diamond blue (boron),
yellow (nitrogen), brown (defects), green (radiation exposure), purple, pink,
orange, or red. Diamond also has a very high refractive index and a relatively
high optical dispersion.
Most natural diamonds have ages between 1 billion and 3.5 billion years. Most were formed at depths between 150 and 250 kilometers (93 and 155 mi) in the Earth's mantle, although a few have come from as deep as 800 kilometers (500 mi). Under high pressure and temperature, carbon-containing fluids dissolved various minerals and replaced them with diamonds. Much more recently (hundreds to tens of million years ago), they were carried to the surface in volcanic eruptions and deposited in igneous rocks known as kimberlites and lamproites.
Synthetic diamonds can be grown from high-purity carbon under high pressures and temperatures or from hydrocarbon gases by chemical vapor deposition (CVD). Natural and synthetic diamonds are most commonly distinguished using optical techniques or thermal conductivity measurements.
Properties
Diamond is a solid form of pure carbon with its atoms arranged in a crystal. Solid carbon comes in different forms known as allotropes depending on the type of chemical bond. The two most common allotropes of pure carbon are diamond and graphite. In graphite, the bonds are sp2 orbital hybrids and the atoms form in planes, with each bound to three nearest neighbors, 120 degrees apart. In diamond, they are sp3 and the atoms form tetrahedra, with each bound to four nearest neighbors. Tetrahedra are rigid, the bonds are strong, and, of all known substances, diamond has the greatest number of atoms per unit volume, which is why it is both the hardest and the least compressible. It also has a high density, ranging from 3150 to 3530 kilograms per cubic meter (over three times the density of water) in natural diamonds and 3520 kg/m3 in pure diamond. In graphite, the bonds between nearest neighbors are even stronger, but the bonds between parallel adjacent planes are weak, so the planes easily slip past each other. Thus, graphite is much softer than diamond. However, the stronger bonds make graphite less flammable.
Diamonds have been adopted for many uses because of the material's exceptional physical characteristics. It has the highest thermal conductivity and the highest sound velocity. It has low adhesion and friction, and its coefficient of thermal expansion is extremely low. Its optical transparency extends from the far infrared to the deep ultraviolet and it has high optical dispersion. It also has high electrical resistance. It is chemically inert, not reacting with most corrosive substances, and has excellent biological compatibility.
Thermodynamics
The equilibrium pressure and temperature conditions for a transition between graphite and diamond are well established theoretically and experimentally. The equilibrium pressure varies linearly with temperature, between 1.7 GPa at 0 K and 12 GPa at 5000 K (the diamond/graphite/liquid triple point). However, the phases have a wide region about this line where they can coexist. At standard temperature and pressure, 20 °C (293 K) and 1 standard atmosphere (0.10 MPa), the stable phase of carbon is graphite, but diamond is metastable, with a significant kinetic energy barrier that the atoms must overcome in order to reach the lower energy state, and its rate of conversion to graphite is negligible, with a timescale of millions to billions of years. However, at temperatures above about 4500 K, diamond rapidly converts to graphite. Experiments have found that diamond in the presence of H₂O passes through an intermediate linear carbon phase.
Rapid conversion of graphite to
diamond requires pressures well above the equilibrium line: at 2000 K, a
pressure of 35 GPa (about 350,000 standard atmospheres) is needed.
Above the graphite–diamond–liquid carbon triple point, the melting point of diamond increases slowly with increasing pressure; but at pressures of hundreds of GPa, it decreases. At high pressures, silicon and germanium have a BC8 body-centered cubic crystal structure, and a similar structure is predicted for carbon at high pressures. At 0 K, the transition is predicted to occur at 1100 GPa.
Results published in Nature Physics in 2010 suggest that, at ultra-high pressures and temperatures (about 10 million atmospheres or 1 TPa and 50,000 °C), diamond melts into a metallic fluid. The extreme conditions required for this to occur are present in the ice giant planets Neptune and Uranus, both of which are made up of approximately 10 percent carbon and could hypothetically contain oceans of liquid carbon. Since large quantities of metallic fluid can affect the magnetic field, this could serve to explain why the geographic and magnetic poles of the two planets are not aligned.
Crystal Structure
The most common crystal structure of diamond is called diamond cubic. It is formed of unit cells stacked together. Although there are 18 atoms in the figure, each corner atom is shared by eight-unit cells and each atom in the center of a face is shared by two, so there are a total of eight atoms per unit cell. The length of each side of the unit cell is denoted by a and is 3.567 angstroms.
The nearest neighbor distance in
the diamond lattice is 1.732a/4 where a is the lattice constant, usually given
in Angstrøms as a = 3.567 Å, which is 0.3567 nm.
A diamond cubic lattice can be thought of as two interpenetrating face-centered cubic lattices with one displaced by 1⁄4 of the diagonal along a cubic cell, or as one lattice with two atoms associated with each lattice point. Viewed from a <1 1 1> crystallographic direction, it is formed of layers stacked in a repeating ABCABC ... pattern. Diamonds can also form an ABAB ... structure, which is known as hexagonal diamond or lonsdaleite, but this is far less common and is formed under different conditions from cubic carbon.
Crystal Habit
Diamonds occur most often as
euhedral or rounded octahedra and twinned octahedra known as macles. As
diamond's crystal structure has a cubic arrangement of the atoms, they have
many facets that belong to a cube, octahedron, rhombicosidodecahedron, tetrakis
hexahedron, or disdyakis dodecahedron. The crystals can have rounded-off and
unexpressive edges and can be elongated. Diamonds (especially those with
rounded crystal faces) are commonly found coated in nyf, an opaque gum-like
skin.
Some diamonds contain opaque fibers. They are referred to as opaque if the fibers grow from a clear substrate or fibrous if they occupy the entire crystal. Their colors range from yellow to green or gray, sometimes with cloud-like white to gray impurities. Their most common shape is cuboidal, but they can also form octahedra, dodecahedra, macles, or combined shapes. The structure is the result of numerous impurities with sizes between 1 and 5 microns. These diamonds probably formed in kimberlite magma and sampled the volatiles.
Diamonds can also form polycrystalline aggregates. There have been attempts to classify them into groups with names such as boart, ballas, stewartite, and framesite, but there is no widely accepted set of criteria. Carbonado, a type in which the diamond grains were sintered (fused without melting by the application of heat and pressure), is black in color and tougher than single crystal diamond. It has never been observed in a volcanic rock. There are many theories for its origin, including formation in a star, but no consensus.
Mechanical Properties
Hardness
Diamond is the hardest material on the qualitative Mohs scale. To conduct the quantitative Vickers hardness test, samples of materials are struck with a pyramid of standardized dimensions using a known force – a diamond crystal is used for the pyramid to permit a wide range of materials to be tested. From the size of the resulting indentation, a Vickers hardness value for the material can be determined. Diamond's great hardness relative to other materials has been known since antiquity, and is the source of its name. This does not mean that it is infinitely hard, indestructible, or unscratchable. Indeed, diamonds can be scratched by other diamonds and worn down over time even by softer materials, such as vinyl phonograph records.
Diamond hardness depends on its
purity, crystalline perfection, and orientation: hardness is higher for
flawless, pure crystals oriented to the <111> direction (along the
longest diagonal of the cubic diamond lattice). Therefore, whereas it might be
possible to scratch some diamonds with other materials, such as boron nitride,
the hardest diamonds can only be scratched by other diamonds and
nanocrystalline diamond aggregates.
The hardness of diamond contributes to its suitability as a gemstone. Because it can only be scratched by other diamonds, it maintains its polish extremely well. Unlike many other gems, it is well-suited to daily wear because of its resistance to scratching—perhaps contributing to its popularity as the preferred gem in engagement or wedding rings, which are often worn every day.
The hardest natural diamonds mostly originate from the Copeton and Bingara fields located in the New England area in New South Wales, Australia. These diamonds are generally small, perfect to semiperfect octahedra, and are used to polish other diamonds. Their hardness is associated with the crystal growth form, which is single-stage crystal growth. Most other diamonds show more evidence of multiple growth stages, which produce inclusions, flaws, and defect planes in the crystal lattice, all of which affect their hardness. It is possible to treat regular diamonds under a combination of high pressure and high temperature to produce diamonds that are harder than the diamonds used in hardness gauges.
Diamonds cut glass, but this does not positively identify a diamond because other materials, such as quartz, also lie above glass on the Mohs scale and can also cut it. Diamonds can scratch other diamonds, but this can result in damage to one or both stones. Hardness tests are infrequently used in practical gemology because of their potentially destructive nature. The extreme hardness and high value of diamond means that gems are typically polished slowly, using painstaking traditional techniques and greater attention to detail than is the case with most other gemstones; these tend to result in extremely flat, highly polished facets with exceptionally sharp facet edges. Diamonds also possess an extremely high refractive index and fairly high dispersion. Taken together, these factors affect the overall appearance of a polished diamond and most diamantaires still rely upon skilled use of a loupe (magnifying glass) to identify diamonds "by eye".
Toughness
Somewhat related to hardness is another mechanical property toughness, which is a material's ability to resist breakage from forceful impact. The toughness of natural diamond has been measured as 50–65 MPa·m1/2. This value is good compared to other ceramic materials, but poor compared to most engineering materials such as engineering alloys, which typically exhibit toughness over 80 MPa·m1/2. As with any material, the macroscopic geometry of a diamond contributes to its resistance to breakage. Diamond has a cleavage plane and is therefore more fragile in some orientations than others. Diamond cutters use this attribute to cleave some stones before faceting them. "Impact toughness" is one of the main indexes to measure the quality of synthetic industrial diamonds.
Yield Strength
Diamond has compressive yield strength of 130–140 GPa. This exceptionally high value, along with the hardness and transparency of diamond, are the reasons that diamond anvil cells are the main tool for high pressure experiments. These anvils have reached pressures of 600 GPa. Much higher pressures may be possible with nanocrystalline diamonds.
Elasticity and Tensile Strength
Usually, attempting to deform bulk diamond crystal by tension or bending results in brittle fracture. However, when single crystalline diamond is in the form of micro/nanoscale wires or needles (~100–300 nanometers in diameter, micrometers long), they can be elastically stretched by as much as 9–10 percent tensile strain without failure, with a maximum local tensile stress of about 89–98 GPa, very close to the theoretical limit for this material.
Electrical Conductivity
Other specialized applications also exist or are being developed, including use as semiconductors: some blue diamonds are natural semiconductors, in contrast to most diamonds, which are excellent electrical insulators. The conductivity and blue color originate from boron impurity. Boron substitutes for carbon atoms in the diamond lattice, donating a hole into the valence band.
Substantial conductivity is
commonly observed in nominally undoped diamond grown by chemical vapor
deposition. This conductivity is associated with hydrogen-related species
adsorbed at the surface, and it can be removed by annealing or other surface
treatments.
Thin needles of diamond can be made to vary their electronic band gap from the normal 5.6 eV to near zero by selective mechanical deformation.
High-purity diamond wafers 5 cm in diameter exhibit perfect resistance in one direction and perfect conductance in the other, creating the possibility of using them for quantum data storage. The material contains only 3 parts per million of nitrogen. The diamond was grown on a stepped substrate, which eliminated cracking.
Surface Properties
Diamonds are naturally lipophilic
and hydrophobic, which means the diamonds' surface cannot be wet by water, but
can be easily wet and stuck by oil. This property can be utilized to extract
diamonds using oil when making synthetic diamonds. However, when diamond
surfaces are chemically modified with certain ions, they are expected to become
so hydrophilic that they can stabilize multiple layers of water ice at human
body temperature.
The surface of diamonds is partially oxidized. The oxidized surface can be reduced by heat treatment under hydrogen flow. That is to say, this heat treatment partially removes oxygen-containing functional groups. But diamonds (sp3C) are unstable against high temperature (above about 400 °C (752 °F)) under atmospheric pressure. The structure gradually changes into sp2C above this temperature. Thus, diamonds should be reduced below this temperature.
Chemical Stability
At room temperature, diamonds do not react with any chemical reagents including strong acids and bases.
In an atmosphere of pure oxygen, diamond has an ignition point that ranges from 690 °C (1,274 °F) to 840 °C (1,540 °F); smaller crystals tend to burn more easily. It increases in temperature from red to white heat and burns with a pale blue flame, and continues to burn after the source of heat is removed. By contrast, in air the combustion will cease as soon as the heat is removed because the oxygen is diluted with nitrogen. A clear, flawless, transparent diamond is completely converted to carbon dioxide; any impurities will be left as ash. Heat generated from cutting a diamond will not ignite the diamond, and neither will a cigarette lighter, but house fires and blow torches are hot enough. Jewelers must be careful when molding the metal in a diamond ring.
Diamond powder of an appropriate grain size (around 50 microns) burns with a shower of sparks after ignition from a flame. Consequently, pyrotechnic compositions based on synthetic diamond powder can be prepared. The resulting sparks are of the usual red-orange color, comparable to charcoal, but show a very linear trajectory which is explained by their high density. Diamond also reacts with fluorine gas above about 700 °C (1,292 °F).
Color
Diamond has a wide band gap of 5.5 eV corresponding to the deep ultraviolet wavelength of 225 nanometers. This means that pure diamond should transmit visible light and appear as a clear colorless crystal. Colors in diamond originate from lattice defects and impurities. The diamond crystal lattice is exceptionally strong, and only atoms of nitrogen, boron, and hydrogen can be introduced into diamond during the growth at significant concentrations (up to atomic percents). Transition metals nickel and cobalt, which are commonly used for growth of synthetic diamond by high-pressure high-temperature techniques, have been detected in diamond as individual atoms; the maximum concentration is 0.01% for nickel and even less for cobalt. Virtually any element can be introduced to diamond by ion implantation.
Nitrogen is by far the most common
impurity found in gem diamonds and is responsible for the yellow and brown
color in diamonds. Boron is responsible for the blue color. Color in diamond
has two additional sources: irradiation (usually by alpha particles), that
causes the color in green diamonds, and plastic deformation of the diamond
crystal lattice. Plastic deformation is the cause of color in some brown and
perhaps pink and red diamonds. In order of increasing rarity, yellow diamond is
followed by brown, colorless, then by blue, green, black, pink, orange, purple,
and red. "Black", or carbonado, diamonds are not truly black, but
rather contain numerous dark inclusions that give the gems their dark
appearance. Colored diamonds contain impurities or structural defects that
cause the coloration, while pure or nearly pure diamonds are transparent and
colorless. Most diamond impurities replace a carbon atom in the crystal
lattice, known as a carbon flaw. The most common impurity, nitrogen, causes a
slight to intense yellow coloration depending upon the type and concentration
of nitrogen present. The Gemological Institute of America (GIA) classifies low
saturation yellow and brown diamonds as diamonds in the normal color range, and
applies a grading scale from "D" (colorless) to "Z" (light
yellow). Yellow diamonds of high color saturation or a different color, such as
pink or blue, are called fancy-colored diamonds and fall under a different
grading scale.
In 2008, the Wittelsbach Diamond, a 35.56-carat (7.112 g) blue diamond once belonging to the King of Spain, fetched over
US24millionataChristie′sauction.
InMay2009, a7.03−carat(1.406g)bluediamondfetchedthehighestpricepercarateverpaidforadiamondwhenitwassoldatauctionfor10.5millionSwissfrancs(6.97millioneuros,orUS24millionataChristie′sauction.InMay2009,a7.03−carat(1.406g)bluediamondfetchedthehighestpricepercarateverpaidforadiamondwhenitwassoldatauctionfor10.5millionSwissfrancs(6.97millioneuros,orUS9.5
million at the time). That record was, however, beaten the same year: a 5-carat
(1.0 g) vivid pink diamond was sold for US$10.8 million in Hong Kong on
December 1, 2009.
Comments
Post a Comment
Thank you for your message.